remove personal configs

main
hkr04 2025-04-13 00:07:59 +08:00
parent f6cc8995fb
commit fdbb9fd9c3
6 changed files with 0 additions and 127 deletions

View File

@ -1,15 +0,0 @@
[humanus_cli]
llm = "qwen-max-latest" # Key in config_llm.toml
memory = "long-context" # Key in config_mem.toml
tools = ["filesystem", "playwright", "image_loader"] # Builtin tools configuration
mcp_servers = ["python_execute"] # Key in config_mcp.toml, all MCP tools provided by servers will be added
max_steps = 30 # Maximum automatic steps without user's check
duplicate_threshold = 2 # Used to detect repeating condition (will be checked by LCS)
[humanus_plan]
llm = "deepseek-chat"
memory = "long-context"
tools = ["filesystem", "playwright", "image_loader"]
mcp_servers = ["python_execute"]
max_steps = 30
duplicate_threshold = 2

View File

@ -1,17 +0,0 @@
["nomic-embed-text-v1.5"]
provider = "oai" # Only support OAI-Compatible style for now
base_url = "http://localhost:8080" # Base url. Note: Don't add any endpoint behind
endpoint = "/v1/embeddings" # Endpoint of embeddings
model = "nomic-embed-text-v1.5.f16.gguf" # Model name
api_key = "" # Your API Key
embeddings_dim = 768 # Dimension of embeddings (refer to API docs)
max_retries = 3 # Maximum retry count
[qwen-text-embedding-v3]
provider = "oai"
base_url = "https://dashscope.aliyuncs.com"
endpoint = "/compatible-mode/v1/embeddings"
model = "text-embedding-v3"
api_key = "sk-cb1bb2a240d84182bb93f6dd0fe03600"
embeddings_dim = 1024
max_retries = 3

View File

@ -1,45 +0,0 @@
[qwen-max]
model = "qwen-max" # Model name
base_url = "https://dashscope.aliyuncs.com" # Base url. Note: Don't add any endpoint behind
endpoint = "/compatible-mode/v1/chat/completions" # Endpoint of chat completions
api_key = "sk-cb1bb2a240d84182bb93f6dd0fe03600" # Your API Key
[qwen-max-latest]
model = "qwen-max-latest"
base_url = "https://dashscope.aliyuncs.com"
endpoint = "/compatible-mode/v1/chat/completions"
api_key = "sk-cb1bb2a240d84182bb93f6dd0fe03600"
[qwen-vl-max-latest]
model = "qwen-vl-max-latest"
base_url = "https://dashscope.aliyuncs.com"
endpoint = "/compatible-mode/v1/chat/completions"
api_key = "sk-cb1bb2a240d84182bb93f6dd0fe03600"
enable_vision = true # This means the model could accept content item like {"image_url", {"url", "xxx"}}
["claude-3.5-sonnet"]
model = "anthropic/claude-3.5-sonnet"
base_url = "https://openrouter.ai"
endpoint = "/api/v1/chat/completions"
api_key = "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"
enable_vision = true
["claude-3.7-sonnet"]
model = "anthropic/claude-3.7-sonnet"
base_url = "https://openrouter.ai"
endpoint = "/api/v1/chat/completions"
api_key = "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"
enable_vision = true
[deepseek-chat]
model = "deepseek-chat"
base_url = "https://api.deepseek.com"
endpoint = "/v1/chat/completions"
api_key = "sk-93c5bfcb920c4a8aa345791d429b8536"
[deepseek-r1]
model = "deepseek-reasoner"
base_url = "https://api.deepseek.com"
endpoint = "/v1/chat/completions"
api_key = "sk-93c5bfcb920c4a8aa345791d429b8536"
enable_tool = false

View File

@ -1,23 +0,0 @@
[python_execute]
type = "sse"
host = "localhost"
port = 8895
sse_endpoint = "/sse"
message_enpoint = "/message"
[puppeteer]
type = "stdio"
command = "npx"
args = ["-y", "@modelcontextprotocol/server-puppeteer"]
[playwright]
type = "stdio"
command = "npx"
args = ["-y", "@executeautomation/playwright-mcp-server"]
[filesystem]
type = "stdio"
command = "npx"
args = ["-y",
"@modelcontextprotocol/server-filesystem",
"/Users/hyde/Desktop"] # Allowed paths

View File

@ -1,19 +0,0 @@
[default]
max_messages = 16 # Maximum number of messages in short-term memory
max_tokens_message = 32768 # Maximum number of tokens in single message
max_tokens_messages = 65536 # Maximum number of tokens in short-term memory
max_tokens_context = 131072 # Maximum number of tokens in context (used by `get_messages`)
retrieval_limit = 32 # Maximum number of results to retrive from long-term memory
embedding_model = "qwen-text-embedding-v3" # Key in config_embd.toml
vector_store = "hnswlib" # Key in config_vec.toml
llm = "qwen-max-latest" # Key in config_llm.toml
[long-context]
max_messages = 32
max_tokens_message = 64000
max_tokens_messages = 128000
max_tokens_context = 128000
retrieval_limit = 32
embedding_model = "qwen-text-embedding-v3"
vector_store = "hnswlib"
llm = "qwen-max-latest"

View File

@ -1,8 +0,0 @@
[hnswlib]
provider = "hnswlib"
dim = 768 # Dimension of the elements
max_elements = 100 # Maximum number of elements, should be known beforehand
M = 16 # Tightly connected with internal dimensionality of the data
# strongly affects the memory consumption
ef_construction = 200 # Controls index search speed/build speed tradeoff
metric = "L2" # Distance metric to use, can be L2 or IP